7x^2+3=-x^2+15

Simple and best practice solution for 7x^2+3=-x^2+15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x^2+3=-x^2+15 equation:



7x^2+3=-x^2+15
We move all terms to the left:
7x^2+3-(-x^2+15)=0
We get rid of parentheses
7x^2+x^2-15+3=0
We add all the numbers together, and all the variables
8x^2-12=0
a = 8; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·8·(-12)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{6}}{2*8}=\frac{0-8\sqrt{6}}{16} =-\frac{8\sqrt{6}}{16} =-\frac{\sqrt{6}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{6}}{2*8}=\frac{0+8\sqrt{6}}{16} =\frac{8\sqrt{6}}{16} =\frac{\sqrt{6}}{2} $

See similar equations:

| 76+59+x=180 | | 1(-2x+11)=-82 | | 8x-8/7+4x-6/10=-11 | | 8(-11x-15)=-9 | | 9(2x-12)=-84 | | 4x−28−2x−2 = −20 | | 11x+1=101.5 | | 7x-2=115.8 | | X/154+(x+21)/154+5x/154=1 | | 13(-12x-7)=44 | | -2x*1=-x+8 | | (3x-10)-(2x+9)=3 | | 10x-8=-19-2x | | X+(x+21)+5x/154=1 | | 8(5y-4)+8y=16 | | (x+25)+x=101 | | 6.3-y=2.9 | | -5x-3=-79+5x | | 4(x=13)=72 | | 105+210+4n+5n=360 | | -5(x+1)+3=-14 | | (x+42)+(2x)=90 | | 37195.37=x*1.15 | | -(r+9)=-59 | | 2a+6a=12 | | 6d−4d+7d=–9 | | X2=(x+27)(x-15) | | 11x-6x+204=11x+78 | | 21/28=33/x | | 1x=-5x+5 | | 9x=6,3 | | X=(6x+5)(7x-8) |

Equations solver categories